

2nd Steelhead Summit

October 27 & 28, 2016 in San Luis Obispo, CA

+ Session Overview

Sponsors:

- California Trout
- City of San Luis Obispo
- Sustainable Conservation
- California Conservation Corps
- Cachuma Operation and Maintenance Board
- Wildnote

The year's Summit agenda highlighted adaptive genomic variation, steelhead recovery planning, coastal monitoring status reports, fish passage planning, and water conservation efforts.

The full-day symposium was followed by concurrent field tours to restoration sites that showcase fish passage improvements and water conservation projects.

Coastal Monitoring and Limiting Factors for Steelhead: Status, Challenges, and Opportunities

(Slide 4) Coastal Monitoring for Southern California Steelhead: Challenges and Opportunities Kate McLaughlin, Environmental Scientist, California Department of Fish and Wildlife

(Slide 29) Severe Drought and Actions Taken to Save the Endangered Southern California Steelhead within the Santa Ynez River Basin Timothy H. Robinson, Senior Resource Scientist, Cachuma Project Water Agencies

(not included) Evaluating Factors that Limit Recovery of Central California Coast Steelhead: Insights from Long-term Monitoring in the Scott Creek Watershed Ann-Marie Osterback, Southwest Fisheries Science Center, NOAA Fisheries

(Slide 52) Conditional Smolting and the Response of Carmel River Steelhead to Two Decades of Conservation Efforts David Boughton, Southwest Fisheries Science Center, NOAA Fisheries

Coastal Monitoring and Limiting Factors for Steelhead: Status, Challenges, and Opportunities

Kate McLaughlin

Coastal Monitoring and Limiting Factors for Steelhead: Status, Challenges, and Opportunities Coastal Monitoring and Limiting Factors for Steelhead: Status, Challenges, and Opportunities Coastal Monitoring and Limiting Factors for <u>Southern California</u> Steelhead: Status, Challenges, and Opportunities

Southern CA Challenges

Steelhead

- Life history
- Morphology
- Behavior

<u>Landscape</u>

- Geology
- Climate
- Land Use

Best Methods

- Truest answer
- Cost effective
- Possible
- Fit with the conditions
- Meet study goals

Creek	Rescue Date	Temp. (°C)
Montecito Creek	05/30/14	17.0
San Antonio Creek	07/01/14	19.8
San Ysidro Creek	07/15/14	18.0
Santa Paula Creek	09/04/14	17.2
Santa Paula Creek	09/11/14	15.2
Sisar Creek	09/11/14	16.8
Arroyo Hondo Creek	10/07/14	17.1
Upper Matilija	04/01/15	22.8
Montecito Creek	05/22/15	14.2
Gobernador Creek	06/08/15	15.6
Arroyo Hondo Creek	06/18/15	14.9
Upper Matilija	06/23/15	19.4
Maria Ygnacio Creek	09/10/15	23.1
North Fork Matilija Creek	09/10/15	16.8
Upper North Fork Matilija	09/15/15	18.5
Arroyo Hondo	09/17/15	17.8
Sisar Creek	10/06/15	15.5

CDFW

http://www.nwd.usace.army.mil/Portals/25/siteimages/pittag.jpg

Kate McLaughlin California Department of Fish & Wildlife

Best Methods

- Truest answer
- Cost effective
- Possible
- Fit with the conditions
- Meet study goals

Steelhead Summit

October 27-28, 2016 San Luis Obispo

Severe Drought and Actions Taken to Save the Endangered Southern California Steelhead within the Santa Ynez River Basin

> Timothy H. Robinson Senior Resource Scientist for Cachuma Project Water Agencies

Drought 2012-2016

Lake Cachuma February 2013

CFSv2 forecast Nino3.4 SST anomalies (K)

Month	Water Y	'ears:															
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Oct	0.00	2.64	0.62	0.00	0.00	6.38	0.48	0.16	0.34	0.15	2.20	2.24	0.47	0.12	0.34	0.00	0.30
Nov	1.62	0.00	3.27	2.50	1.20	0.33	1.64	0.20	0.06	3.39	0.00	1.42	2.82	1.34	1.14	0.87	0.73
Dec	0.00	0.09	2.66	6.73	2.03	13.25	0.73	1.59	2.39	2.46	3.00	9.48	0.35	2.95	0.18	5.88	1.12
Jan	1.94	8.40	0.87	0.06	0.32	10.30	7.82	1.30	16.57	0.65	10.34	1.84	1.58	1.75	0.02	0.82	4.03
Feb	10.37	5.71	0.24	3.56	6.52	9.22	3.06	3.03	2.33	5.70	4.92	3.36	0.43	0.40	4.11	0.51	1.65
Mar	2.76	13.44	0.79	2.40	0.48	3.08	4.31	0.15	0.46	0.85	0.26	11.85	3.63	0.80	3.52	0.08	3.02
Apr	4.73	1.35	0.13	2.15	0.00	1.27	4.89	0.81	0.06	0.19	3.15	0.14	3.21	0.19	0.65	0.36	0.24
Мау	0.01	0.06	0.12	2.33	0.00	0.51	1.56	0.00	0.38	0.00	0.05	0.42	0.02	0.02	0.00	0.26	0.36
Jun	0.04	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.16	0.00	0.34	0.00	0.00	0.00	0.42	0.00
Jul	0.00	0.06	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
Aug	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sept	0.00	0.00	0.08	0.00	0.00	0.03	0.00	0.17	0.00	0.08	0.00	0.00	0.18	0.00	0.00	0.15	0.00
Totals:	21.47	31.75	8.78	19.76	10.55	44.41	24.49	7.41	22.59	13.66	23.92	31.09	12.69	7.57	9.96	9.38	11.45

Average Monthly Runoff at Solvang (Alisal Bridge)

Lake Cachuma Spill Volume (Water Year: Oct-Sept)

Lake Storage: 193,305 acre-feet

Refugio Road Bridge

Alisal Road Bridge 7/10/11

Santa Ynez River Watershed Overview

~900 sq. miles ~90 river miles to the ocean Mediterranean climate 3 Reservoirs
Lake Cachuma and Bradbury Dam

Storage loss: 9.8%

Capacity: 193,305 afAnnual entitlement: 25,714 af

Current Lake Condition

- Max Storage 193,305 af
- Max Elevation 753 ft
- Current* Elevation 646.5 ft
- Current Storage 14,095 af
- Current Capacity 7.3%
- Minimum Pool 12,000 af
- Elevation Below Spill 106.5 ft
- Annual entitlement = 25,715 af

*10/26/16

Remaining *O. Mykiss* in the Santa Ynez River Watershed

Salsipuedes/El Jaro Creek

Hilton Creek

Hilton Creek Watering System

CIP Connection Volt

The Cachuma Project USBR and O. Mykiss

1953

USBR COMB 5 Member Units Parent District Cities Agriculture

- **1993** Beginning of the Fisheries Program at COMB
- **1997** Listing
- **1999** Biological Assessment for Cachuma Project Operations
- **2000** Cachuma Project Biological Opinion (BO, NMFS to USBR)
- **2000** LSYR Fish Management Plan (FMP)
- **2004** EIR/EIS for BO and FMP LSYR Fish Management Plan

2016 New draft State Water Resources Control Board Order (WR-2016-?)
 2016? New draft Cachuma Project Biological Opinion

Actions Taken to Save O. Mykiss in the LSYR Basin under Severe Drought

General:

- Monitoring and Reporting
- Fish Passage Improvement Projects (10 with 2 more soon)
- Habitat Enhancement Projects (4)
- Programmed Fish Releases (Fish Passage Supplementation + target flows)
- Outreach

Hilton Creek and LSYR Hwy 154 Reach

Hilton Creek and the Hwy 154 Reach under Critical Drought:

- Hilton Creek Watering System (gravity > pumping; > 4 cfs)
- Upper Release Point to Lower Release Point (2-3 cfs)
- Hilton Creek Emergency Backup System (gravity and pumping; < 1 cfs)
- Hilton Creek Watering Tanks with Truck Delivery (~0.04 cfs)
- Stilling Basin to Hilton Creek by Submersible pump (~0.03 cfs)
- Future: ? (pray for rain)

LSYR Long Pool

10/18/16

10/20/16

	A DOMEST	
	Lake Elevation (ft)	
Barge Site 1 - minumum pumping depth (no dredging)	663	
Barge Site 1 - minumum pumping depth (with dredging)	658	
Lake elevation to move barge to Site 2	658	
Dead/Minimum Pool	643	
Minimum pumping depth at Dead/Minimum Pool*	631	
* Barge operational pumping depth is 12 feet, hence minimum depth to		
pump down to Dead/Minimum Pool is 631 (643-12).		

B

752.744125

きのな

683 89T

668 674 669 673

751.63

68>

Int₄₈ke

ower.

662 661

SAN GOS GIRE ST

Pia

722 740

HOA

725 727

BAZ

a

676 667

674 680 672

692695 689713 708

1st ig

æ

731-

-

75-

ATT 626

631 629620

T5464

715 718723

F739

631 ft

660 658

624 625

625 624

693659 645

601 709

Cra

Conclusions

- Southern California Steelhead are on the edge
- WY2011 was a long time ago
- Drought could continue
- Human cry is loud and fish lack advocates
- Climate change: expect extremes (the new norm)
- Human consumption: reduce, update, reclaim and be creative
- Future: conserve and think-act dry

Questions

Salsipuedes Creek Upstream 701 mm = 27.6 Inches February 5th, 2008 *Largest Steelhead Ever Captured On Project

Thanks for your attention!

51

SW Fisheries Science Center

Conditional Smolting and the Response of Carmel River Steelhead to Two Decades of Conservation Efforts

David Boughton

Collaborators: Juan Arriaza, Kevan Urquhart, Marc Mangel

27 October 2016

Carmel River Steelhead

Since late 1990s:

- Habitat Restoration
- Captive rearing
- Relocations

Why has the population declined since 2000?

Size-Conditional Smolting and Survival

Questions

- What explains the Adult Decline?
 - Changes in Juvenile Abundance?
 - Changes in Juvenile Growth and Conditional Smolting?

• What is the role of Captive-Rearing?

56

Methods

① Estimate YOY abundance and sizes from October data

- 2 Project growth forward to smolting season (April), using temperature data, bioenergetic model.
- ③ Predict numbers of returning adults, using smolting and survival curves from other sites
- ④ Formal statistical comparison of: Juvenile-abundance model, versus Conditional-smolting model

① Estimate YOY abundance and sizes from October data

③ Predict numbers of returning adults

NOAA FISHERIES

(4) Formal Statistical Comparison of Models

Model	AICc*	Delta	Model Weight
Conditional Smolting	202.53	0.00	0.81
Juvenile Abundance	205.41	2.88	0.19

* Formal score for explanatory power of each model

Trends in YOY sizes at 9 river sites

Lengths of Captively-Reared Juveniles

Conclusions

- Conditional-smolting model explains adult numbers better than juvenile-abundance model
- Wild YOY abundance is non-trending
- Wild YOY growth and size are trending downward!
- Especially in the lower river.
- Most adult production is now from captive rearing

Carmel River

66

Additional Slides

Mainstem Ventura River - Moore 1980 Thesis

Experimental YOY planted in late June

Year	Weather	Summer Flow	YOY growth	Oct 15 Size
1977	Drought	Intermittent (0.15 – 0.10 cms)	17 mm / month	108 mm
1978	Drought	Intermittent (0.12 – 0.06 cms)	19 mm / month	112 mm
1979	Wet (2x avg rainfall) Channel Reworked by Flows	Continuous to Ocean (2.55 – 0.43 cms)	28 mm / month	144 mm

