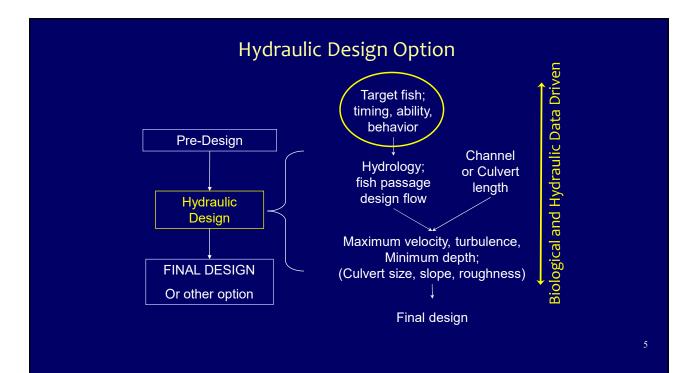
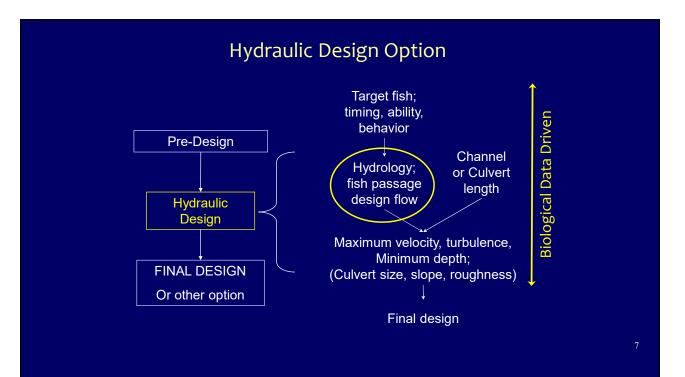

Hydraulic Design Overview


Michael Love P.E. Arcata, California mlove@h2odesigns.com 707-822-2411

Two Design Options - Premises

- Hydraulic: A structure with appropriate hydraulic conditions will allow target species to swim through it.
- Stream Simulation: A channel that simulates characteristics of the adjacent natural channel will present no more of a challenge to movement of organisms than the natural channel.

Target Species & Life Stages

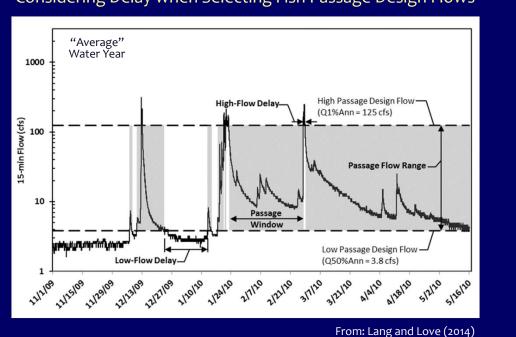

Fish Passage Hydraulic Criteria and Design Flows

- Primarily developed for Salmonids, and Pacific Lamprey to lesser extent
- Consult literature and biologist for non-salmonid target species

List of Fish Species found in one small urban stream in Arcata, CA (from Darren Ward, CPH, 2024)

Common Name Coho salmon Coastal cutthroat trout Threespine stickleback Western brook lamprey Night Smelt Pacific staghorn sculpin Prickly Sculpin Coastrange sculpin Starry Flounder Tidewater goby Yellowfin goby Longjaw mudsucker Flounder sp Scientific name Oncorhynchus kistuch Oncorhynchus clarkii clarkii Gasterosteus aculeatus Lampetra richasrdosni Spirinchus starksi Leptocottus armatus Cottus asper Cottus aleuticus Platichthys stellatus Eucycloglobius newberryi Acanthogobius flavimanus Gillichthys mirabilis Pleuronectidae

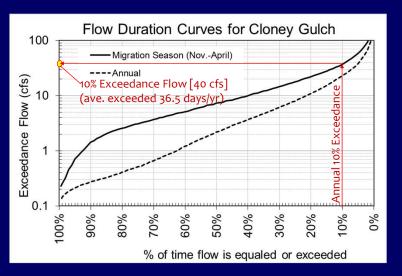
Fish Passage Flow Considerations

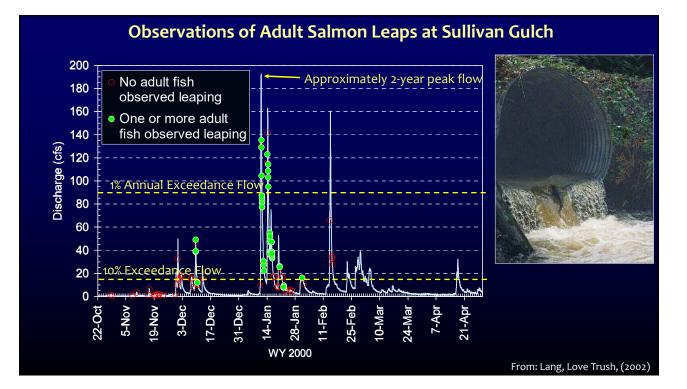

Migration Timing

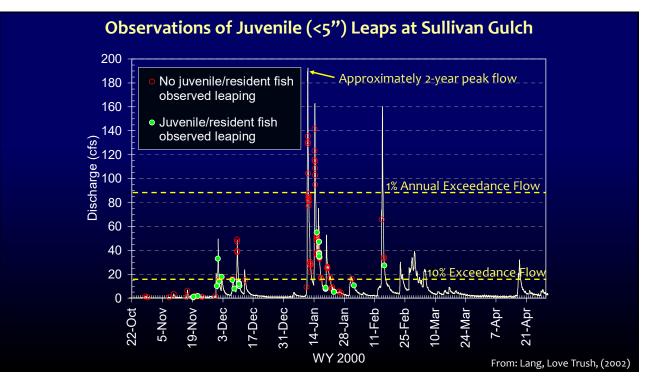
- Purpose of upstream movement \triangleright
 - ✤ spawning
 - * thermal refugia ✤ foraging
 - ✤ pop. density
- > Sensitivity to delay
 - dry years
 wet year

> Hydrologic Characteristics

- ✤ peaky ✤ spring feed
- * long duration (spring runoff) ✤ infrequent events



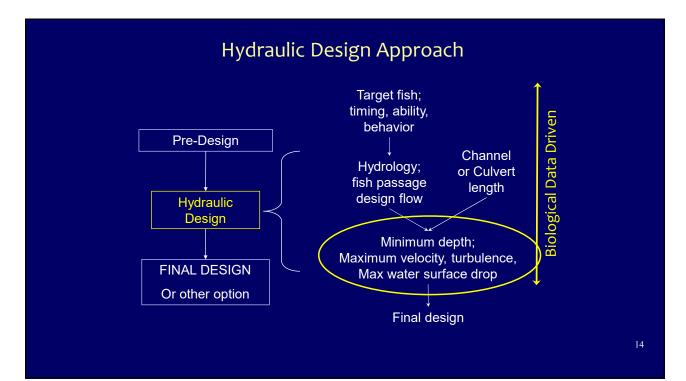



Considering Delay when Selecting Fish Passage Design Flows

Fish Passage Design Flows

- Typically based on Flow Duration Curves constructed using daily average discharge
- CA salmonid criteria based on entire year,
 - Sometime projects also examine migration period, or most extreme month(s) of year (wet or dry)

Fish Passage Flows for Hydraulic Designs


California Fish Passage Flow Requirements (CDFW, 2001; NMFS, 2002 and 2019)

	Low Passage Design Flow		High Passage Design Flow	
Species/Lifestage	Annual Exceedance Flow	Alternative Minimum Flow	Annual Exceedance Flow	Based on 2- year Flow*
Adult Anadromous Salmonids	50%	3 cfs	1%**	50% of Q2-yr
Adult Non-Anadromous Salmonids [#]	90%	2 cfs	5%	10% of Q2-yr
Juvenile Salmonids	95%	1 cfs	10%	5% of Q2-yr
Non-Native Salmonids [#]	90%	1 cfs	5%	N/A
Desirable Non-Native Species#	90%	1 cfs	10%	N/A

* Refer to NMFS (2019) Fish Passage Addendum #1 for to determine when to use.

** NMFS (2019) uses migration season rather than annual for adult anadromous salmonids

[#] Non anadromous design flows from CDFW, 2001.

	IN	IOAA Fishe	eries West	Coast	Regior	and CDF	OFW allowable velocities
		Species/Lifestage					Minimum Flow Depth (ft)
		Adult Anadromous Salmonids					1.0
		Adult Non-Anadromous Salmonids			nonids		0.67
		Juvenile Salmonids					0.5
					becies sp	ecific swin	imming performance data is
							of the hydraulic design option
							s. Hydraulic design is not species without this data.
Excerpt from the	e Morphometric	Data Table:					Total Length Thick
Common name	Family	Genus	Species	BD/TL	TL/SL	TL/FL	Standard Length
broad whitefish	Salmonidae	Coregonus	nasus	0.232	1.165	1.099	
humpback chub	Cyprinidae	Gila	cypha	0.224	1.252	1.134	
	Salmonidae	Coregonus	pidschian	0.196	1.142	1.078	
humpback whitefish			leucichthys	0.174	1.146	1.080	
humpback	Salmonidae	Stenodus				1 080	

readmill

What do we know about Fish Energetics?

Swim Speed Variable

- Fish Size
- Water Temperatures
- Swimming Mode and Length: Aerobic (sustained swimming) Anaerobic (burst swimming) Mixed Mode (prolonged swimming)
- Method of Testing: Lab settings, method of capture...
- Stressors: Chemical, lack of depth, distance traveled, time spent in fresh water...

Flume (volitional)

Respirometer

Hydraulic Approach: Allowable Velocities

NOAA Fisheries West Coast Region and CDFW allowable velocities

Culvert Length vs Maximum Average Water Velocity for Adult Salmonids				
Culvert Length (ft)	Adult Non-Anadromous Salmonids (fps)	Adult Anadromous Salmonids (fps)		
<60	4	6		
60-100	4	5		
100-200	3	4		
200-300	2	3		
>300	2	2		
Juvenile salmonids* 1				

* 2 fps allowable for short distances

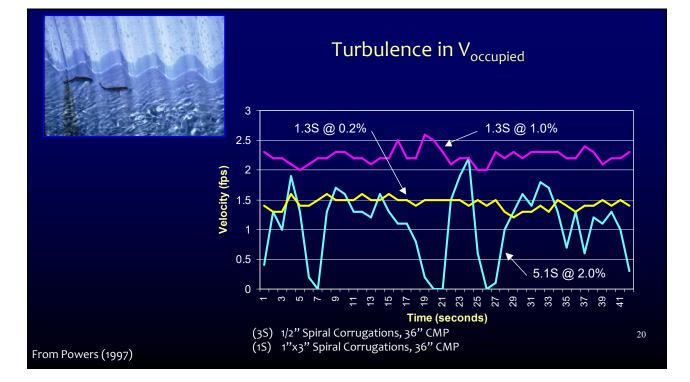
17

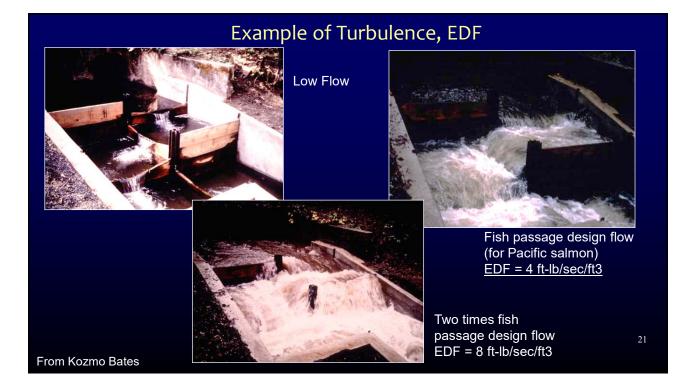
Hydraulic Approach Roughness and Slope Controls Velocity

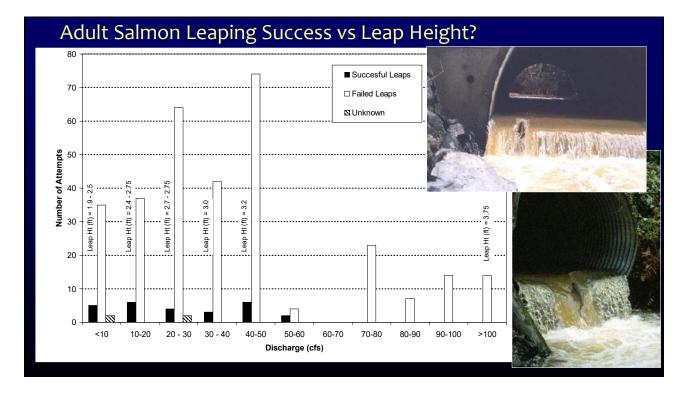
- Culvert walls
- Bed material
- Baffles
 - Limitations of turbulence, debris, maintenance
- Roughened channel
 - Bed stability
 - Variety of migration pathways
 - Turbulence limitation though higher than baffles

Battelle & DOE, 2003

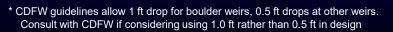
Turbulence


- Measured by Energy Dissipation Factor (EDF)
- Limits fish passage





For Technical Fishways:	Max E
Adult Anadromous Salmonids	4 ft-lb/
Adult Resident Salmonids	3 ft-lb/



Hydraulic Approach: Maximum Drop

NMFS West Coast Region and CDFW Maximum Water Surface Drops

Species/Lifestage	Maximum Drop (ft)
Adult Anadromous Salmonids	1
Adult Non-Anadromous Salmonids	1
Juvenile Salmonids*	1.0 (NMFS, 2019)
Native Non-Salmonids	Where fish passage is required for native non-salmonids no hydraulic drop shall be allowed at the culvert outlet unless data is
Non-Native Species	presented which will establish the leaping ability and leaping behavior of the target species of fish.

** Drop height criteria does not apply to stream simulation designs. Instead, drops should not exceed those found in the reference/natural channel reach.

