Geomorphic-Based Profile Control Techniques

Michael Love, P.E. mlove@h2odesigns.com

Profile Control Options				
	Slope	Pros / Cons		
Restored Profile	Limited by channel type	+ Passage diversity, Habitat - Scale/cost		
Roughened Channel	Durability, bedload limit	+ Passage diversity - Species, failure risk		
, Boulder Weirs	<u><</u> 5%	+ Passage diversity, Habitat - Failure risk		
Rigid Weirs (log, concrete)	<u><</u> 5%	+ Rigid, durable - Species, habitat		
Technical Fishway	10% or "vertical"	+ Small footprint - Species specific, flow, sediment, debris		
		3	3	

Profile Restoration - Outlet Creek, WA

Large Wood Placed to Capture Streambed Material and Raise Incised Channel Bed.

Eliminated Perched Culvert Outlet for Fish Passage

Constructed 2000 | Photos from 2005

Photos from Kozmo Bates

Geomorphically-Based Roughened Channels

- Channel constructed steeper than the adjacent channel (profile control)
- Based on morphology of steeper stream channel
- Stable engineered streambed material (ESM) forms channel bed & banks
- Quazi-hydraulic design for target species/lifestages (velocity, depth, drop, EDF)

Natural Steep Stream Morphology

Steep Boulder-Cobble Stream Channels Types

Geomorphically-Based Roughened Channels

Common Channel Types

- Roughened Riffles (short ramps)
- Plane Bed Channel (longer rock ramps)
- Rapids or Chutes & Pools
- Step-Pools
- Increasing Slope ♦ Cascades & Pool

Caution:

- > Only use channel types & slopes that the target species/lifestage are known to ascend
- > Risk increases further the roughened channel characteristics deviates from the natural channel (i.e. slope, bed material, entrenchment)

Plane-Bed (Rock Ramp) Roughened Channels

Slope & Length Thresholds:

- ➢ Slope Range: < 4%</p>
- > Max Head Diff.: 5 feet
- ➤ Use chutes and Pools for Larger Head Differentials

Bed Morphology:

- Random placement of rock
- ▷ D100 < Channel Depth</p>

Plane-Bed (Rock Ramp) Roughened Channels

Rock Ramp into Off-Channel Pond for Juvenile Coho Access

- 5% Slope for 60 ft
- 3 ft of fall
- Primarily Spring Fed

Pinole Creek Rock Ramp at I-80 Culvert Outlet

Hydraulic Diversity

High Passage flow for Juvenile Trout (~20 cfs)

- 4% slope
- Target Species:
- Adult Anadromous Steelhead
- Adult Rainbow Trout
- Juvenile Trout

Chutes & Pools Roughened Channels <u>Slope & Length Thresholds (for armored pools)</u>: > Slope Range:

- > Max Head Diff.: 2 feet per chute
- Pools between Chutes to Dissipate Energy/Provide Fish Holding Habitat

Bed Morphology:

- Chutes (Rapids) with both Specified and Random Rock Placement
- > D100 < Channel Depth
- Pools Armored with Coarse Bed Material

Penitencia Creek, Alum Rock Park

Profile

20

Chutes & Pools Roughened Channel

Rowdy Creek Fish Hatchery - Incised Channel below US101 Chutes and Pools Roughened Channel 5 Chutes and Pools | Total Fall = 10 feet

5 Chutes and Pools | Total Fall = 10 feet

Concrete sills provide added stability & control subsurface flow

Step-Pool Roughened Channels

Slope & Length Thresholds:

➢ Slope Range: 3% to 6.5% overall

Bed Morphology:

- Rhythmic Pattern of Boulder Steps/Weirs
- Larger Rocks in Step 0.5 to 1.0 Bankfull Depth
- Oversized Pool every
 3 to 5 feet of drop
- Drop Height & Pool Depth should satisfy fish passage criteria
- Pools Armored with Coarse Bed Material

Step-Pool Roughened Channels

Rohnerville Creek at 12th St <u>Step-Pool Roughened Channel</u> Slope = 3.8% Drop/Step = 0.5 ft 9 Boulder Steps Spacing 13.5 ft

Steps: 36"- 48" Boulders ESM Armored Pools - Pool D84 = 30" - Pool D50 = 12"

Challenging to build steps with design drop height

Use of 0.5 ft drops allowed for large vertical tolerance for step construction 25

Gulch 7 Step Pool Roughened Channel-Stream Simulation Hybrid

Gulch 7 Step Pool Roughened Channel-Stream Simulation Hybrid

Cascade & Pool Roughened Channels

Slope & Length Thresholds:

Slope Range: > 5% cascade > 4% overall

Bed Morphology:

- Complex series of small drops and pools
- Largest keystone boulders <u>></u> bankfull depth
- Drops and constructions form jet & wake hydraulics
- Armored pool every 3 to 5 feet of drop to dissipate energy

Cascade Slope: 6%-7% Overall Slope (w/pool): 4%

Considered by CDFW as "Experimental" May not provide suitable passage for juvenile salmonids 27

	Prc	s and	Cons	of	Different	Bed	Morpholo	gies
anad		Plan	e Red					Cascado

Roughened Channel Type	Plane Bed (aka Rock Ramps)	Chutes & Pools	Step-Pool	Cascades & Pools [Experimental]
Slope and Fall Limitations	Max Slope 5% Max 5 ft fall	 Max Chute Slope 7% Max Overall Slope 4% 2 ft drop fall between pools 	 Slope 3% to 6.5% 1 ft drop over boulder step 	 Cascade Slope >5% Overalls Slope ≥ 4% 3-5 ft fall between pools
Low Flow Performance	Shallow Depths limit low flow passage	Shallow Depths limit low flow passage	Excellent – steps can concentrate lowest flows and pools depth	Shallow Depths limit low flow passage
Hydraulic Diversity	High – boulders create many flow paths	High – boulders create many flow paths		High – boulders create many flow paths
Resting/Energy Dissipation	Larger fall results in higher velocities at downstream end. Little resting habitat provided.	Good – chute roughness and pool spacing work together to dissipate energy and provide resting.	At higher flows pool can become too turbulent. Can result in streaming flow down channel. Pools provide good resting habitat.	Turbulence in steep cascades can become excessive at higher passage flows. Larger fall between pools can cause fish exhaustion
Channel Planform	Needs to be relatively straight in rock ramp and downstream channel before turn.	Channel can turn at pools – use larger pools for turning.	Not suitable for wide channels. Turns in channel shall be gentle across multiple pools	Needs to be straight with large pool at downstream end before any bends in channel.
Requires Fish to Leap	No leaping required	No leaping required	Smaller fish must leap over steps, especially at low flows	No leaping required
Construction Complexity	Standard roughened channel construction	Standard roughened channel construction	Additional attention to rock placement to achieve stability and design drop height	Additional attention to rock placement to achieve intended hydraulics

- Larger than bedload transported into roughened channel
- No replacement by natural bedload material
- Sized to be stable to a <u>bed design flow</u> (Q100yr)

<text><text><equation-block><text><text><text><list-item><list-item><list-item>

1,300 cfs Close to Adult Anadromous High Passage Design Flow

Winter Baseflow

<section-header>

Evaluating Fish Passage Conditions in Roughened Channels

<u>In Smaller Channels</u> – Should evaluate passage hydraulics using entire wetted section

<u>In Wider Channels</u> – Can evaluate passage through a "Passage Corridor" with 2D or 3D model results

Applied Passage Criteria

In Ramps, Chutes & Cascades

- 1. Ave. Cross Sectional Water Velocity (*U*)
- 2. Max Cross Sectional Water Water Depth
- 3. Turbulence (EDF)

- In Rock Armored Pools
- 1. Water Surface Drop

49

- 2. Pool Depth
- 3. Turbulence (EDF)

Adding Structure Rocks to DEM for 2D Hydraulic Modeling

DEM = Digital Elevation Model

HEC-RAS 2D model velocities using DEM from 3D Scan of constructed Rock Chutes

Plunging Flow & Turbulence

- Energy is dissipated in receiving pool through turbulence (heat)
- Pools with adjustable beds will scour and enlarge to dissipate energy
- <u>Armored pools will not adjust</u> can become extremely turbulent
- Excessive Turbulence Creates can Block Fish Passage

Turbulence in Pools

Energy Dissipation Factor (EDF) for Armored Pools

Measure of Power Dissipation per Volume of Water:

$$EDF = \frac{\gamma Qh}{V}$$

h = Drop into Pool, change in EGL (ft)

Q = Flow (cfs)

V = Pool Volume (cf)

 γ = Unit Weight of Water (62.4 lb/cf)

<u>Thresholds for Pools :</u> Adult Salmon: EDF > 4 ft-lb/s/ft³

Adult Resident Trout: EDF > 3 ft-lb/s/ft³

Energy Dissipation Factor (EDF) for Rock Ramps/ Chutes/Cascades

 $EDF = \gamma QS/A$

Hydraulic Diversity in Chutes results in much higher EDF threshold

- *S* = Water Surface Slope
- A = Wetted Cross-Sectional area (sf)

Turbulence in Rock Ramps/Chutes and Cascades

Construction Sequencing and Methods

1. Grading and Compact Subgrade

<section-header>

3. Stockpile ESM onsite. Within a small section of channel, place material in correct proportions and mix with excavator bucket ...

Construction Sequencing and Methods

4. ... If delivered premixed to site, must be remixed in channel due to settling in truck.

5. Install Engineered Streambed Material (ESM)...

5. ... Place Structure Rocks into Lifts.

60

59

6. Jet channel bed and banklines to fill voids, compact bed, and wash fines off surface. Collect and remove fines from bottom of reach.

Rock Sizing for Weirs

From Design of Rock Weirs (NRCS, 2000)

Far West States (FWS) Lane Method riprap sizing method (NRCS, 1996)

- w = channel top width at the design flow (feet)
- D = maximum depth of flow in channel (feet)
- *S* = channel slope (feet/feet)
- C = coefficient for channel curvature (1 for straight channels)
- K = side slope coefficient. 0.53 for 1.5H:1V, 0.87 for 3H:1V,

Rock Weir Gradation

Dmin-Weir = $0.75 \times (D50-Riprap)$ D50-Weir = $2 \times (D50-Riprap)$ D100-Weir = $4 \times (D50-Riprap)$

71

Riffles and Chutes

Spring Prairie Cr Cobble riffle

From Luther Aadland

Rock Riffles and Chutes

Rigid Weirs: Concrete, sheet pile, ...

- Objectives:
 - Steepen grade (self sealing)
 - Rigid permanent bed control to maintain steep grade
- Max 5% grade in small streams
- Prefabricated; installation easy but demands care
- Deeper keys into bed and banks than rock weirs
- Shape to fit channel and control thalweg (v-shape)
- Can add hydraulic complexity along crest to improve passage

Horizontal Double Log Sills

- Keeps log wetted to increases longevity
- · Easy to construct
- Spreads out flow
 - Forms wide pools, rather than long
 - Anticipate bank erosion when keying
- Wide smooth surface/ low hydraulic complexity
 - May not be good for juvenile passage

Log Controls

Logs anchored to wood postsRock added to protect banks

Complex Log Steps

Index Creek Vee log weirs

 $\circ~$ Top Log Anchored to Footer Log

Log controls

- Straight
 - Objective: Steepen grade, optimize select passage, minimize cost and length, secure elevation control
 - 5% grade max as bed retention
 - Uniform channel
 - Secure designs available
- V- Shape
 - Objective: Steepen grade, deepen thalweg, narrow channel, provide select passage
 - More diverse channel
- Can be made complex
- Durable

